A simple proof of the invariant torus theorem
Féjoz, Jacques (2010), A simple proof of the invariant torus theorem. https://basepub.dauphine.fr/handle/123456789/7480
Type
Document de travail / Working paperExternal document link
http://arxiv.org/abs/1005.5604v1Date
2010Publisher
Université Pierre et Marie Curie
Published in
Paris
Pages
19
Metadata
Show full item recordAuthor(s)
Féjoz, JacquesAbstract (EN)
We give a simple proof of Kolmogorov's theorem on the persistence of a quasiperiodic invariant torus in Hamiltonian systems. The theorem is first reduced to a well-posed inversion problem (Herman's normal form) by switching the frequency obstruction from one side of the conjugacy to another. Then the proof consists in applying a simple, well suited, inverse function theorem in the analytic category, which itself relies on the Newton algorithm and on interpolation inequalities. A comparison with other proofs is included in appendix.Subjects / Keywords
Kolmogorov's theoremRelated items
Showing items related by title and author.
-
Féjoz, Jacques (2012) Article accepté pour publication ou publié
-
Féjoz, Jacques (2005) Communication / Conférence
-
Féjoz, Jacques (2013) Article accepté pour publication ou publié
-
Arnaud, Marie-Claude; Féjoz, Jacques (2021) Document de travail / Working paper
-
Chenciner, Alain; Féjoz, Jacques (2008) Article accepté pour publication ou publié