Large Deviations for a matching problem related to the ∞-Wasserstein distance
Trashorras, José (2011), Large Deviations for a matching problem related to the ∞-Wasserstein distance. https://basepub.dauphine.fr/handle/123456789/7529
Type
Document de travail / Working paperExternal document link
http://hal.archives-ouvertes.fr/hal-00641378/fr/Date
2011Publisher
Université Paris-Dauphine
Published in
Paris
Pages
21
Metadata
Show full item recordAuthor(s)
Trashorras, JoséAbstract (EN)
Let $(E,d)$ be a compact metric space, $X=(X_1,\dots,X_n,\dots)$ and $Y=(Y_1,\dots,Y_n,\dots)$ two independent sequences of independent $E$-valued random variables and $(L^X_n)_{n \geq 1}$ and $(L^Y_n)_{n \geq 1}$ the associated sequences of empirical measures. We establish a Large Deviations Principle for $(W_{\infty}(L^X_n,L^Y_n))_{n \geq 1}$ where $W_{\infty}$ is the $\infty$-Wasserstein distance.Subjects / Keywords
minimax matching problem; infinity - wasserstein distance; Large deviationsRelated items
Showing items related by title and author.
-
Trashorras, José (2018) Article accepté pour publication ou publié
-
Wintenberger, Olivier; Trashorras, José (2014) Article accepté pour publication ou publié
-
Trashorras, José (2008) Article accepté pour publication ou publié
-
Tsagkarogiannis, Dimitrios; Trashorras, José (2010) Article accepté pour publication ou publié
-
Guillin, Arnaud; Gentil, Ivan; Bolley, François (2012) Article accepté pour publication ou publié