Show simple item record

dc.contributor.authorTrashorras, José
dc.date.accessioned2011-11-16T15:42:46Z
dc.date.available2011-11-16T15:42:46Z
dc.date.issued2011
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/7529
dc.language.isoenen
dc.subjectminimax matching problemen
dc.subjectinfinity - wasserstein distanceen
dc.subjectLarge deviationsen
dc.subject.ddc519en
dc.titleLarge Deviations for a matching problem related to the ∞-Wasserstein distanceen
dc.typeDocument de travail / Working paper
dc.description.abstractenLet $(E,d)$ be a compact metric space, $X=(X_1,\dots,X_n,\dots)$ and $Y=(Y_1,\dots,Y_n,\dots)$ two independent sequences of independent $E$-valued random variables and $(L^X_n)_{n \geq 1}$ and $(L^Y_n)_{n \geq 1}$ the associated sequences of empirical measures. We establish a Large Deviations Principle for $(W_{\infty}(L^X_n,L^Y_n))_{n \geq 1}$ where $W_{\infty}$ is the $\infty$-Wasserstein distance.en
dc.publisher.nameUniversité Paris-Dauphineen
dc.publisher.cityParisen
dc.identifier.citationpages21en
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00641378/fr/en
dc.description.sponsorshipprivateouien
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record