dc.contributor.author | Trashorras, José | |
dc.date.accessioned | 2011-11-16T15:42:46Z | |
dc.date.available | 2011-11-16T15:42:46Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/7529 | |
dc.language.iso | en | en |
dc.subject | minimax matching problem | en |
dc.subject | infinity - wasserstein distance | en |
dc.subject | Large deviations | en |
dc.subject.ddc | 519 | en |
dc.title | Large Deviations for a matching problem related to the ∞-Wasserstein distance | en |
dc.type | Document de travail / Working paper | |
dc.description.abstracten | Let $(E,d)$ be a compact metric space, $X=(X_1,\dots,X_n,\dots)$ and $Y=(Y_1,\dots,Y_n,\dots)$ two independent sequences of independent $E$-valued random variables and $(L^X_n)_{n \geq 1}$ and $(L^Y_n)_{n \geq 1}$ the associated sequences of empirical measures. We establish a Large Deviations Principle for $(W_{\infty}(L^X_n,L^Y_n))_{n \geq 1}$ where $W_{\infty}$ is the $\infty$-Wasserstein distance. | en |
dc.publisher.name | Université Paris-Dauphine | en |
dc.publisher.city | Paris | en |
dc.identifier.citationpages | 21 | en |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00641378/fr/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
hal.author.function | aut | |