• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

About Kac's Program in Kinetic Theory

Mouhot, Clément; Mischler, Stéphane (2011), About Kac's Program in Kinetic Theory, Comptes rendus mathématique, 349, 23-24, p. 1245-1250. http://dx.doi.org/10.1016/j.crma.2011.11.012

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00641197/fr/
Date
2011
Journal name
Comptes rendus mathématique
Volume
349
Number
23-24
Publisher
Elsevier
Pages
1245-1250
Publication identifier
http://dx.doi.org/10.1016/j.crma.2011.11.012
Metadata
Show full item record
Author(s)
Mouhot, Clément
Mischler, Stéphane
Abstract (EN)
In this Note we present the main results from the recent work arxiv:1107.3251, which answers several conjectures raised fifty years ago by Kac. There Kac introduced a many-particle stochastic process (now denoted as Kac's master equation) which, for chaotic data, converges to the spatially homogeneous Boltzmann equation. We answer the three following questions raised in \cite{kac}: (1) prove the propagation of chaos for realistic microscopic interactions (i.e. in our results: hard spheres and true Maxwell molecules); (2) relate the time scales of relaxation of the stochastic process and of the limit equation by obtaining rates independent of the number of particles; (3) prove the convergence of the many-particle entropy towards the Boltzmann entropy of the solution to the limit equation (microscopic justification of the $H$-theorem of Boltzmann in this context). These results crucially rely on a new theory of quantitative uniform in time estimates of propagation of chaos.
Subjects / Keywords
propagation of chaos; mean-field limit; Boltzmann equation; jump process; relaxation; Kac

Related items

Showing items related by title and author.

  • Thumbnail
    Kac's Program in Kinetic Theory 
    Mouhot, Clément; Mischler, Stéphane (2013) Article accepté pour publication ou publié
  • Thumbnail
    Fractional diffusion limit for collisional kinetic equations 
    Mellet, Antoine; Mischler, Stéphane; Mouhot, Clément (2011) Article accepté pour publication ou publié
  • Thumbnail
    Exponential stability of slowly decaying solutions to the kinetic Fokker-Planck equation 
    Mischler, Stéphane; Mouhot, Clément (2016) Article accepté pour publication ou publié
  • Thumbnail
    Quantitative uniform in time chaos propagation for Boltzmann collision processes 
    Mouhot, Clément; Mischler, Stéphane (2010) Document de travail / Working paper
  • Thumbnail
    Weighted Korn and Poincaré-Korn inequalities in the Euclidean space and associated operators 
    Carrapatoso, Kleber; Dolbeault, Jean; Hérau, Frédéric; Mischler, Stéphane; Mouhot, Clément (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo