About Kac's Program in Kinetic Theory
dc.contributor.author | Mouhot, Clément
HAL ID: 1892 | |
dc.contributor.author | Mischler, Stéphane | |
dc.date.accessioned | 2011-11-16T15:50:40Z | |
dc.date.available | 2011-11-16T15:50:40Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/7531 | |
dc.language.iso | en | en |
dc.subject | propagation of chaos | en |
dc.subject | mean-field limit | en |
dc.subject | Boltzmann equation | en |
dc.subject | jump process | en |
dc.subject | relaxation | en |
dc.subject | Kac | en |
dc.subject.ddc | 519 | en |
dc.title | About Kac's Program in Kinetic Theory | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | DPMMS/CMS University of Cambridge;Royaume-Uni | |
dc.description.abstracten | In this Note we present the main results from the recent work arxiv:1107.3251, which answers several conjectures raised fifty years ago by Kac. There Kac introduced a many-particle stochastic process (now denoted as Kac's master equation) which, for chaotic data, converges to the spatially homogeneous Boltzmann equation. We answer the three following questions raised in \cite{kac}: (1) prove the propagation of chaos for realistic microscopic interactions (i.e. in our results: hard spheres and true Maxwell molecules); (2) relate the time scales of relaxation of the stochastic process and of the limit equation by obtaining rates independent of the number of particles; (3) prove the convergence of the many-particle entropy towards the Boltzmann entropy of the solution to the limit equation (microscopic justification of the $H$-theorem of Boltzmann in this context). These results crucially rely on a new theory of quantitative uniform in time estimates of propagation of chaos. | en |
dc.relation.isversionofjnlname | Comptes rendus mathématique | |
dc.relation.isversionofjnlvol | 349 | |
dc.relation.isversionofjnlissue | 23-24 | |
dc.relation.isversionofjnldate | 2011 | |
dc.relation.isversionofjnlpages | 1245-1250 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1016/j.crma.2011.11.012 | |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00641197/fr/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Elsevier | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |