Solutions of the multiconfiguration equations in quantum chemistry
Lewin, Mathieu (2004), Solutions of the multiconfiguration equations in quantum chemistry, Archive for Rational Mechanics and Analysis, 171, 1, p. 83-114. http://dx.doi.org/10.1007/s00205-003-0281-6
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00093510/en/Date
2004Journal name
Archive for Rational Mechanics and AnalysisVolume
171Number
1Publisher
Springer-Verlag
Pages
83-114
Publication identifier
Metadata
Show full item recordAbstract (EN)
The multiconfiguration methods are the natural generalization of the well-known Hartree-Fock theory for atoms and molecules. By a variational method, we prove the existence of a minimum of the energy and of infinitely many solutions of the multiconfiguration equations, a finite number of them being interpreted as excited states of the molecule. Our results are valid when the total nuclear charge Z exceeds N–1 (N is the number of electrons) and cover most of the methods used by chemists. The saddle points are obtained with a min-max principle; we use a Palais-Smale condition with Morse-type information and a new and simple form of the Euler-Lagrange equations.Subjects / Keywords
Physique mathématiqueRelated items
Showing items related by title and author.
-
Lewin, Mathieu (2002) Article accepté pour publication ou publié
-
Teale, Andrew; Helgaker, Trygve; Savin, Andreas; Adano, Carlo; Lewin, Mathieu (2022) Article accepté pour publication ou publié
-
Savin, Andreas; Lewin, Mathieu; Esteban, Maria J. (2010) Article accepté pour publication ou publié
-
Trabelsi, Saber; Mauser, Norbert; Bardos, Claude; Catto, Isabelle (2009) Article accepté pour publication ou publié
-
Meng, Long (2020-12-18) Thèse