• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Localized minimizers of flat rotating gravitational systems

Fernandez, Javier; Dolbeault, Jean (2008), Localized minimizers of flat rotating gravitational systems, Annales de l'Institut Henri Poincaré. Analyse non linéaire, 25, 6, p. 1043-1071. http://dx.doi.org/10.1016/j.anihpc.2007.01.001

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00112165/en/
Date
2008
Journal name
Annales de l'Institut Henri Poincaré. Analyse non linéaire
Volume
25
Number
6
Publisher
Elsevier Masson SAS.
Pages
1043-1071
Publication identifier
http://dx.doi.org/10.1016/j.anihpc.2007.01.001
Metadata
Show full item record
Author(s)
Fernandez, Javier
Dolbeault, Jean cc
Abstract (EN)
We study a two dimensional system in solid rotation at constant angular velocity driven by a self-consistent three dimensional gravitational field. We prove the existence of non symmetric stationary solutions of such a flat system in the rotating frame as long as the angular velocity does not exceed some critical value which depends on the mass. The solutions can be seen as stationary solutions of a kinetic equation with a relaxation-time collision kernel forcing the convergence to the polytropic gas solutions, or as stationary solutions of an extremely simplified drift-diffusion model, which is derived from the kinetic equation by formally taking a diffusion limit. In both cases, the solutions are critical points of a free energy functional, and can be seen as localized minimizers in an appropriate sense. Symmetry breaking occurs for small angular velocities.
Subjects / Keywords
angular velocity; entropy; diffusion limit; drift-diffusion; Hardy-Littlewood-Sobolev inequality; bounded solutions; critical bifurcation parameter; rotation; mass; symmetry breaking; localized minimizers; radial solutions; minimization; solutions with compact support; Stellar dynamics; gravitation

Related items

Showing items related by title and author.

  • Thumbnail
    Stability for the gravitational Vlasov-Poisson system in dimension two 
    Dolbeault, Jean; Fernandez, Javier; Sanchez, Oscar (2006) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model 
    Fernandez, Javier; Escobedo, Miguel; Dolbeault, Jean; Blanchet, Adrien (2010) Article accepté pour publication ou publié
  • Thumbnail
    Oscillating minimizers of a fourth order problem invariant under scaling 
    Catto, Isabelle; Dolbeault, Jean; Benguria, Rafael; Monneau, Régis (2004) Article accepté pour publication ou publié
  • Thumbnail
    A Preliminary Comparison of P-Tool Consistency 
    Murillo, Javier; Spetale, Flavio; Tapia, Elizabeth; Krsticevic, Flavia; Cailloux, Olivier; Guillaume, Serge; Vazquez, Gustavo; Fernandez, Tamara; Destercke, S.; Ponce, Sergio; Bulacio, P. (2020) Communication / Conférence
  • Thumbnail
    Minimization Methods for the One-Particle Dirac Equation 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric; Vanbreugel, Michel (2000) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo