Show simple item record

dc.contributor.authorMouhot, Clément
HAL ID: 1892
dc.contributor.authorVillani, Cédric
dc.date.accessioned2009-07-04T10:04:03Z
dc.date.available2009-07-04T10:04:03Z
dc.date.issued2004
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/771
dc.description47 pagesen
dc.language.isoenen
dc.subjectBoltzmann equation ; spatially homogeneous ; hard spheres ; hard potentials ; angular cutoff ; regularity theory ; quantitative ; relaxation to equilibriumen
dc.subject.ddc519en
dc.titleRegularity theory for the spatially homogeneous Boltzmann equation with cut-offen
dc.typeArticle accepté pour publication ou publiéen_US
dc.contributor.editoruniversityotherEcole Normale Supérieure de Lyon, Lyon;France
dc.description.abstractenWe develop the regularity theory of the spatially homogeneous Boltzmann equation with cut-off and hard potentials (for instance, hard spheres), by (i) revisiting the Lp-theory to obtain constructive bounds, (ii) establishing propagation of smoothness and singularities, (iii) obtaining estimates about the decay of the sin- gularities of the initial datum. Our proofs are based on a detailed study of the “regularity of the gain operator”. An application to the long-time behavior is presented.en
dc.relation.isversionofjnlnameArchive for Rational Mechanics and Analysis
dc.relation.isversionofjnlvol173en
dc.relation.isversionofjnlissue2en
dc.relation.isversionofjnldate2004-08
dc.relation.isversionofjnlpages169-212en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s00205-004-0316-7en
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00087274/en/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherSpringer-Verlagen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record