High dimensional matrix estimation with unknown variance of the noise
Klopp, Olga (2011), High dimensional matrix estimation with unknown variance of the noise. https://basepub.dauphine.fr/handle/123456789/7822
Type
Document de travail / Working paperLien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00649437/fr/Date
2011Éditeur
Université Paris-Dauphine
Ville d’édition
Paris
Pages
27
Métadonnées
Afficher la notice complèteAuteur(s)
Klopp, OlgaRésumé (EN)
We propose a new pivotal method for estimating high-dimensional matrices. Assume that we observe a small set of entries or linear combinations of entries of an unknown matrix $A_0$ corrupted by noise. We propose a new method for estimating $A_0$ which does not rely on the knowledge or an estimation of the standard deviation of the noise $\sigma$. Our estimator achieves, up to a logarithmic factor, optimal rates of convergence under the Frobenius risk and, thus, has the same prediction performance as previously proposed estimators which rely on the knowledge of $\sigma$. Our method is based on the solution of a convex optimization problem which makes it computationally attractive.Mots-clés
recovery of the rank; low rank matrix estimation; matrix regression; Matrix completionPublications associées
Affichage des éléments liés par titre et auteur.
-
Carpentier, Alexandra; Collier, Olivier; Comminges, Laëtitia; Tsybakov, Alexandre B.; Wang, Y. (2022) Article accepté pour publication ou publié
-
Klopp, Olga (2011) Article accepté pour publication ou publié
-
Klopp, Olga (2014) Article accepté pour publication ou publié
-
Galarce, Felipe; Gerbeau, Jean-Frédéric; Lombardi, Damiano; Mula, Olga (2019) Document de travail / Working paper
-
Peyré, Gabriel; Meziani, Katia; Alquier, Pierre (2013) Article accepté pour publication ou publié