dc.contributor.author | Klopp, Olga | |
dc.date.accessioned | 2012-01-03T15:38:03Z | |
dc.date.available | 2012-01-03T15:38:03Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/7822 | |
dc.language.iso | en | en |
dc.subject | recovery of the rank | en |
dc.subject | low rank matrix estimation | en |
dc.subject | matrix regression | en |
dc.subject | Matrix completion | en |
dc.subject.ddc | 519 | en |
dc.title | High dimensional matrix estimation with unknown variance of the noise | en |
dc.type | Document de travail / Working paper | |
dc.contributor.editoruniversityother | Centre de Recherche en Économie et Statistique (CREST) http://www.crest.fr/ INSEE – École Nationale de la Statistique et de l'Administration Économique;France | |
dc.description.abstracten | We propose a new pivotal method for estimating high-dimensional matrices. Assume that we observe a small set of entries or linear combinations of entries of an unknown matrix $A_0$ corrupted by noise. We propose a new method for estimating $A_0$ which does not rely on the knowledge or an estimation of the standard deviation of the noise $\sigma$. Our estimator achieves, up to a logarithmic factor, optimal rates of convergence under the Frobenius risk and, thus, has the same prediction performance as previously proposed estimators which rely on the knowledge of $\sigma$. Our method is based on the solution of a convex optimization problem which makes it computationally attractive. | en |
dc.publisher.name | Université Paris-Dauphine | en |
dc.publisher.city | Paris | en |
dc.identifier.citationpages | 27 | en |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00649437/fr/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |