• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Zero-temperature 2D stochastic Ising model and anisotropic curve-shortening flow

Toninelli, Fabio Lucio; Simenhaus, François; Lacoin, Hubert (2014), Zero-temperature 2D stochastic Ising model and anisotropic curve-shortening flow, Journal of the European Mathematical Society, 16, 12, p. 2557-2615. http://dx.doi.org/10.4171/JEMS/493

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00656387/fr/
Date
2014
Journal name
Journal of the European Mathematical Society
Volume
16
Number
12
Publisher
EMS
Pages
2557-2615
Publication identifier
http://dx.doi.org/10.4171/JEMS/493; 2557-2615
Metadata
Show full item record
Author(s)
Toninelli, Fabio Lucio cc
Simenhaus, François
Lacoin, Hubert
Abstract (EN)
Let D be a simply connected, smooth enough domain of R2. For L > 0 consider the continuous time, zero-temperature heat bath dynamics for the nearest-neighbor Ising model on Z2 with initial condition such that σx = −1 if x ∈ LD and σx = +1 otherwise. It is conjectured [24] that, in the diffusive limit where space is rescaled by L, time by L2 and L → ∞, the boundary of the droplet of "−" spins follows a deterministic anisotropic curve-shortening flow, where the normal velocity at a point of its boundary is given by the local curvature times an explicit function of the local slope. The behavior should be similar at finite temperature T < Tc, with a different temperature-dependent anisotropy function. We prove this conjecture (at zero temperature) when D is convex. Existence and regularity of the solution of the deterministic curve-shortening flow is not obvious a priori and is part of our result. To our knowledge, this is the first proof of mean curvature-type droplet shrinking for a model with genuine microscopic dynamics.
Subjects / Keywords
Curve-shortening flow; Glauber dynamics; sing model

Related items

Showing items related by title and author.

  • Thumbnail
    "Zero" temperature stochastic 3D Ising model and dimer covering fluctuations: a first step towards interface mean curvature motion 
    Caputo, Pietro; Toninelli, Fabio Lucio; Martinelli, Fabio; Simenhaus, François (2011) Article accepté pour publication ou publié
  • Thumbnail
    The heat equation shrinks Ising droplets to points 
    Lacoin, Hubert; Simenhaus, François; Toninelli, Fabio Lucio (2015) Article accepté pour publication ou publié
  • Thumbnail
    Approximate Lifshitz law for the zero-temperature stochastic Ising model in any dimension 
    Lacoin, Hubert (2013) Article accepté pour publication ou publié
  • Thumbnail
    Polymer dynamics in the depinned phase: metastability with logarithmic barriers 
    Toninelli, Fabio Lucio; Simenhaus, François; Martinelli, Fabio; Lacoin, Hubert; Caputo, Pietro (2012) Article accepté pour publication ou publié
  • Thumbnail
    The Scaling Limit for Zero-Temperature Planar Ising Droplets: With and Without Magnetic Fields 
    Lacoin, Hubert (2014) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo