
Minimisation methods for quasi-linear problems, with an application to periodic water waves
Buffoni, Boris; Séré, Eric; Toland, John (2005), Minimisation methods for quasi-linear problems, with an application to periodic water waves, SIAM Journal on Mathematical Analysis, 36, 4, p. 1080-1094. http://dx.doi.org/10.1137/S0036141003432766
View/ Open
Type
Article accepté pour publication ou publiéDate
2005Journal name
SIAM Journal on Mathematical AnalysisVolume
36Number
4Pages
1080-1094
Publication identifier
Metadata
Show full item recordAbstract (EN)
Penalization and minimization methods are used to give an abstract semiglobal result on the existence of nontrivial solutions of parameter-dependent quasi-linear differential equations in variational form. A consequence is a proof of existence, by infinite-dimensional variational means, of bifurcation points for quasi-linear equations which have a line of trivial solutions. The approach is to penalize the functional twice. Minimization gives the existence of critical points of the resulting problem, and a priori estimates show that the critical points lie in a region unaffected by the leading penalization. The other penalization contributes to the value of the parameter. As applications we prove the existence of periodic water waves, with and without surface tension.Subjects / Keywords
variational method; critical-point theory; quasi-linear elliptic problems; periodic water waves; free boundaries; minimizationRelated items
Showing items related by title and author.
-
Buffoni, Boris; Séré, Eric; Toland, John (2003) Article accepté pour publication ou publié
-
Lewin, Mathieu; Séré, Eric (2009) Article accepté pour publication ou publié
-
Buffoni, Boris; Esteban, Maria J.; Séré, Eric (2006) Article accepté pour publication ou publié
-
Melinand, Benjamin (2023) Document de travail / Working paper
-
Bensoussan, Alain; Boccardo, L.; Murat, F. (1992) Article accepté pour publication ou publié