Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations
Priola, Enrico; Gubinelli, Massimiliano; Flandoli, Franco (2011), Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations, Stochastic Processes and their Applications, 121, 7, p. 1445-1463. http://dx.doi.org/10.1016/j.spa.2011.03.004
Type
Article accepté pour publication ou publiéExternal document link
http://fr.arxiv.org/abs/1004.1407Date
2011Journal name
Stochastic Processes and their ApplicationsVolume
121Number
7Publisher
Elsevier
Pages
1445-1463
Publication identifier
Metadata
Show full item recordAbstract (EN)
The motion of a finite number of point vortices on a two-dimensional periodic domain is considered. In the deterministic case it is known to be well posed only for almost every initial configuration. Coalescence of vortices may occur for certain initial conditions. We prove that when a generic stochastic perturbation compatible with the Eulerian description is introduced, the point vortex motion becomes well posed for every initial configuration, in particular coalescence disappears.Subjects / Keywords
Hormander conditions; Euler equations; Stochastic differential equationsRelated items
Showing items related by title and author.
-
Flandoli, Franco; Gubinelli, Massimiliano; Priola, Enrico (2010) Article accepté pour publication ou publié
-
Flandoli, Franco; Gubinelli, Massimiliano; Priola, Enrico (2010) Article accepté pour publication ou publié
-
Bernou, Armand; Liu, Yating (2022) Document de travail / Working paper
-
Russo, Francesco; Flandoli, Franco; Gubinelli, Massimiliano (2009) Article accepté pour publication ou publié
-
Audiard, Corentin; Haspot, Boris (2017) Article accepté pour publication ou publié