The Euclidean Onofri inequality in higher dimensions
Dolbeault, Jean; Del Pino, Manuel (2013), The Euclidean Onofri inequality in higher dimensions, International Mathematics Research Notices, 2013, 15, p. 3600-3611. http://dx.doi.org/10.1093/imrn/rns119
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00658665/fr/Date
2013Journal name
International Mathematics Research NoticesVolume
2013Number
15Publisher
Oxford University Press
Pages
3600-3611
Publication identifier
Metadata
Show full item recordAbstract (EN)
The classical Onofri inequality in the two-dimensional sphere assumes a natural form in the plane when transformed via stereographic projection. We establish an optimal version of a generalization of this inequality in the d-dimensional Euclidean space for any d≥2, by considering the endpoint of a family of optimal Gagliardo-Nirenberg interpolation inequalities. Unlike the two-dimensional case, this extension involves a rather unexpected Sobolev-Orlicz norm, as well as a probability measure no longer related to stereographic projection.Subjects / Keywords
stereographic projection; optimal constants; extremal functions; interpolation; Gagliardo-Nirenberg inequalities; Onofri inequalities; logarithmic Sobolev inequality; Sobolev inequalityRelated items
Showing items related by title and author.
-
Del Pino, Manuel; Dolbeault, Jean (2003) Article accepté pour publication ou publié
-
Nonlinear diffusions, hypercontractivity and the optimal Lp-Euclidean logarithmic Sobolev inequality Del Pino, Manuel; Dolbeault, Jean; Gentil, Ivan (2004) Article accepté pour publication ou publié
-
Musso, Monica; Dolbeault, Jean; Del Pino, Manuel (2004) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Tarantello, Gabriella (2008) Article accepté pour publication ou publié
-
Del Pino, Manuel; Dolbeault, Jean; Musso, Monica (2004) Communication / Conférence