• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Heat Conduction and Entropy Production in Anharmonic Crystals with Self-Consistent Stochastic Reservoirs

Bonetto, Federico; Olla, Stefano; Lukkarinen, Jani; Lebowitz, Joel L. (2009), Heat Conduction and Entropy Production in Anharmonic Crystals with Self-Consistent Stochastic Reservoirs, Journal of Statistical Physics, 134, 5, p. 1097. http://dx.doi.org/10.1007/s10955-008-9657-1

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00318755/en/
Date
2009
Journal name
Journal of Statistical Physics
Volume
134
Number
5
Publisher
Springer
Pages
1097
Publication identifier
http://dx.doi.org/10.1007/s10955-008-9657-1
Metadata
Show full item record
Author(s)
Bonetto, Federico
School of Mathematics - Georgia Institute of Technology
Olla, Stefano cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lukkarinen, Jani

Lebowitz, Joel L.
Center for Mathematical Sciences Research
Abstract (EN)
We investigate a class of anharmonic crystals in $d$ dimensions, $d\ge 1$, coupled to both external and internal heat baths of the Ornstein-Uhlenbeck type. The external heat baths, applied at the boundaries in the $1$-direction, are at specified, unequal, temperatures $\tlb$ and $\trb$. The temperatures of the internal baths are determined in a self-consistent way by the requirement that there be no net energy exchange with the system in the non-equilibrium stationary state (NESS). We prove the existence of such a stationary self-consistent profile of temperatures for a finite system and show it minimizes the entropy production to leading order in $(\tlb -\trb)$. In the NESS the heat conductivity $\kappa$ is defined as the heat flux per unit area divided by the length of the system and $(\tlb -\trb)$. In the limit when the temperatures of the external reservoirs goes to the same temperature $T$, $\kappa(T)$ is given by the Green-Kubo formula, evaluated in an equilibrium system coupled to reservoirs all having the temperature $T$. This $\kappa(T)$ remains bounded as the size of the system goes to infinity. We also show that the corresponding infinite system Green-Kubo formula yields a finite result. Stronger results are obtained under the assumption that the self-consistent profile remains bounded.
Subjects / Keywords
non-equilibrium stationary state; entropy production; self-consistent thermostats; Green-Kubo formula; Thermal condutivity

Related items

Showing items related by title and author.

  • Thumbnail
    Heat Flow in a Periodically Forced, Thermostatted Chain II 
    Komorowski, Tomasz; Lebowitz, Joel; Olla, Stefano (2023) Article accepté pour publication ou publié
  • Thumbnail
    Heat Flow in a Periodically Forced, Thermostatted Chain II 
    Komorowski, Tomasz; Lebowitz, Joel L.; Olla, Stefano (2023) Article accepté pour publication ou publié
  • Thumbnail
    Heat Flow in a Periodically Forced, Thermostatted Chain 
    Komorowski, Tomasz; Lebowitz, Joel L.; Olla, Stefano (2023) Article accepté pour publication ou publié
  • Thumbnail
    On the Conversion of Work into Heat: Microscopic Models and Macroscopic Equations 
    Komorowski, Tomasz; Lebowitz, Joel L.; Olla, Stefano; Simon, Marielle (2023) Article accepté pour publication ou publié
  • Thumbnail
    Green-Kubo formula for weakly coupled systems with noise 
    Bernardin, Cédric; Huveneers, François; Lebowitz, Joel L.; Liverani, Carlangelo; Olla, Stefano (2015) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo