Show simple item record

hal.structure.identifierSchool of Mathematics - Georgia Institute of Technology
dc.contributor.authorBonetto, Federico*
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorOlla, Stefano
HAL ID: 18345
ORCID: 0000-0003-0845-1861
*
hal.structure.identifier
dc.contributor.authorLukkarinen, Jani*
hal.structure.identifierCenter for Mathematical Sciences Research
dc.contributor.authorLebowitz, Joel L.*
dc.date.accessioned2009-07-06T09:38:49Z
dc.date.available2009-07-06T09:38:49Z
dc.date.issued2009
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/786
dc.language.isoenen
dc.subjectnon-equilibrium stationary state
dc.subjectentropy production
dc.subjectself-consistent thermostats
dc.subjectGreen-Kubo formula
dc.subjectThermal condutivityen
dc.subject.ddc519en
dc.titleHeat Conduction and Entropy Production in Anharmonic Crystals with Self-Consistent Stochastic Reservoirsen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherUniversity of Helsinki;Finlande
dc.contributor.editoruniversityotherGeorgia Institute of Technology;États-Unis
dc.contributor.editoruniversityotherRutgers University;États-Unis
dc.description.abstractenWe investigate a class of anharmonic crystals in $d$ dimensions, $d\ge 1$, coupled to both external and internal heat baths of the Ornstein-Uhlenbeck type. The external heat baths, applied at the boundaries in the $1$-direction, are at specified, unequal, temperatures $\tlb$ and $\trb$. The temperatures of the internal baths are determined in a self-consistent way by the requirement that there be no net energy exchange with the system in the non-equilibrium stationary state (NESS). We prove the existence of such a stationary self-consistent profile of temperatures for a finite system and show it minimizes the entropy production to leading order in $(\tlb -\trb)$. In the NESS the heat conductivity $\kappa$ is defined as the heat flux per unit area divided by the length of the system and $(\tlb -\trb)$. In the limit when the temperatures of the external reservoirs goes to the same temperature $T$, $\kappa(T)$ is given by the Green-Kubo formula, evaluated in an equilibrium system coupled to reservoirs all having the temperature $T$. This $\kappa(T)$ remains bounded as the size of the system goes to infinity. We also show that the corresponding infinite system Green-Kubo formula yields a finite result. Stronger results are obtained under the assumption that the self-consistent profile remains bounded.en
dc.relation.isversionofjnlnameJournal of Statistical Physics
dc.relation.isversionofjnlvol134en
dc.relation.isversionofjnlissue5en
dc.relation.isversionofjnldate2009-04
dc.relation.isversionofjnlpages1097en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s10955-008-9657-1en
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00318755/en/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherSpringer
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record