Heat Conduction and Entropy Production in Anharmonic Crystals with Self-Consistent Stochastic Reservoirs
hal.structure.identifier | School of Mathematics - Georgia Institute of Technology | |
dc.contributor.author | Bonetto, Federico | * |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Olla, Stefano
HAL ID: 18345 ORCID: 0000-0003-0845-1861 | * |
hal.structure.identifier | ||
dc.contributor.author | Lukkarinen, Jani | * |
hal.structure.identifier | Center for Mathematical Sciences Research | |
dc.contributor.author | Lebowitz, Joel L. | * |
dc.date.accessioned | 2009-07-06T09:38:49Z | |
dc.date.available | 2009-07-06T09:38:49Z | |
dc.date.issued | 2009 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/786 | |
dc.language.iso | en | en |
dc.subject | non-equilibrium stationary state | |
dc.subject | entropy production | |
dc.subject | self-consistent thermostats | |
dc.subject | Green-Kubo formula | |
dc.subject | Thermal condutivity | en |
dc.subject.ddc | 519 | en |
dc.title | Heat Conduction and Entropy Production in Anharmonic Crystals with Self-Consistent Stochastic Reservoirs | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | University of Helsinki;Finlande | |
dc.contributor.editoruniversityother | Georgia Institute of Technology;États-Unis | |
dc.contributor.editoruniversityother | Rutgers University;États-Unis | |
dc.description.abstracten | We investigate a class of anharmonic crystals in $d$ dimensions, $d\ge 1$, coupled to both external and internal heat baths of the Ornstein-Uhlenbeck type. The external heat baths, applied at the boundaries in the $1$-direction, are at specified, unequal, temperatures $\tlb$ and $\trb$. The temperatures of the internal baths are determined in a self-consistent way by the requirement that there be no net energy exchange with the system in the non-equilibrium stationary state (NESS). We prove the existence of such a stationary self-consistent profile of temperatures for a finite system and show it minimizes the entropy production to leading order in $(\tlb -\trb)$. In the NESS the heat conductivity $\kappa$ is defined as the heat flux per unit area divided by the length of the system and $(\tlb -\trb)$. In the limit when the temperatures of the external reservoirs goes to the same temperature $T$, $\kappa(T)$ is given by the Green-Kubo formula, evaluated in an equilibrium system coupled to reservoirs all having the temperature $T$. This $\kappa(T)$ remains bounded as the size of the system goes to infinity. We also show that the corresponding infinite system Green-Kubo formula yields a finite result. Stronger results are obtained under the assumption that the self-consistent profile remains bounded. | en |
dc.relation.isversionofjnlname | Journal of Statistical Physics | |
dc.relation.isversionofjnlvol | 134 | en |
dc.relation.isversionofjnlissue | 5 | en |
dc.relation.isversionofjnldate | 2009-04 | |
dc.relation.isversionofjnlpages | 1097 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/s10955-008-9657-1 | en |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00318755/en/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Springer | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |