Show simple item record

dc.contributor.authorBernard, Patrick
HAL ID: 281
ORCID: 0000-0001-7250-5604
dc.contributor.authorBuffoni, Boris
dc.date.accessioned2009-07-06T09:44:35Z
dc.date.available2009-07-06T09:44:35Z
dc.date.issued2007
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/788
dc.language.isoenen
dc.subjectOptimal transportation on manifoldsen
dc.subjectLagrangian systemsen
dc.subjectMather theoryen
dc.subjectFathi's Weak KAM theoryen
dc.subjectHamilton-Jacobi equationsen
dc.subject.ddc515en
dc.titleOptimal mass transportation and Mather theoryen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherEcole Polytechnique Fédérale de Lausanne (EPFL);Suisse
dc.contributor.editoruniversityotherCNRS - Université Joseph Fourier - Grenoble 1;France
dc.description.abstractenWe study optimal transportation of measures on compact manifolds for costs defined from convex Lagrangians. We prove that optimal transportation can be interpolated by measured Lipschitz laminations, or geometric currents. The methods are inspired from Mather theory on Lagrangian systems. We make use of viscosity solutions of the associated Hamilton-Jacobi equation in the spirit of Fathi's approach to Mather theory.en
dc.relation.isversionofjnlnameJournal of the European Mathematical Society
dc.relation.isversionofjnlvol9en
dc.relation.isversionofjnlissue1
dc.relation.isversionofjnldate2007
dc.relation.isversionofjnlpages85-121en
dc.relation.isversionofdoihttp://dx.doi.org/10.4171/JEMS/74
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00003587/en/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherEuropean Mathematical Society
dc.subject.ddclabelAnalyseen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record