• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

A Generalized Forward-Backward Splitting

Peyré, Gabriel; Fadili, Jalal; Raguet, Hugo (2013), A Generalized Forward-Backward Splitting, SIAM Journal on Imaging Sciences, 6, 3, p. 1199–1226. http://dx.doi.org/10.1137/120872802

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00613637
Date
2013
Journal name
SIAM Journal on Imaging Sciences
Volume
6
Number
3
Publisher
SIAM
Pages
1199–1226
Publication identifier
http://dx.doi.org/10.1137/120872802
Metadata
Show full item record
Author(s)
Peyré, Gabriel
Fadili, Jalal
Raguet, Hugo
Abstract (EN)
This paper introduces the generalized forward-backward splitting algorithm for minimizing convex functions of the form $F + \sum_{i=1}^n G_i$, where $F$ has a Lipschitz-continuous gradient and the $G_i$'s are simple in the sense that their Moreau proximity operators are easy to compute. While the forward-backward algorithm cannot deal with more than $n = 1$ non-smooth function, our method generalizes it to the case of arbitrary $n$. Our method makes an explicit use of the regularity of $F$ in the forward step, and the proximity operators of the $G_i$'s are applied in parallel in the backward step. This allows the generalized forward backward to efficiently address an important class of convex problems. We prove its convergence in infinite dimension, and its robustness to errors on the computation of the proximity operators and of the gradient of $F$. Examples on inverse problems in imaging demonstrate the advantage of the proposed methods in comparison to other splitting algorithms.
Subjects / Keywords
wavelets; total variation; image processing; convex optimization; proximal; splitting; Forward-backward algorithm

Related items

Showing items related by title and author.

  • Thumbnail
    Local Linear Convergence of Inertial Forward-Backward Splitting for Low Complexity Regularization 
    Liang, Jingwei; Fadili, Jalal M.; Peyré, Gabriel (2015) Communication / Conférence
  • Thumbnail
    Iteration-Complexity of a Generalized Forward Backward Splitting Algorithm 
    Liang, Jingwei; Fadili, Jalal; Peyré, Gabriel (2014) Communication / Conférence
  • Thumbnail
    Local Linear Convergence of Forward–Backward under Partial Smoothness 
    Liang, Jingwei; Fadili, Jalal; Peyré, Gabriel (2014) Communication / Conférence
  • Thumbnail
    Local Linear Convergence Analysis of Primal-Dual Splitting Methods 
    Liang, Jingwei; Fadili, Jalal; Peyré, Gabriel (2018) Article accepté pour publication ou publié
  • Thumbnail
    Proximal Splitting Derivatives for Risk Estimation 
    Deledalle, Charles-Alban; Vaiter, Samuel; Peyré, Gabriel; Fadili, Jalal; Dossal, Charles (2012) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo