Multimodality Imaging Population Analysis using Manifold Learning
Fiot, Jean-Baptiste; Cohen, Laurent D.; Bourgeat, Pierrick; Raniga, Parnesh; Acosta, Oscar; Villemagne, Victor; Salvado, Olivier; Fripp, Jürgen (2012), Multimodality Imaging Population Analysis using Manifold Learning, dans Jorge, R.M. Natal; Tavares, João Manuel R.S., Computational Vision and Medical Image Processing: VipIMAGE 2011, CRC Press : Leiden
Type
Communication / ConférenceLien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00662345Date
2012Titre du colloque
VipIMAGE 2011Date du colloque
2011-10Ville du colloque
OlhãoPays du colloque
PortugalTitre de l'ouvrage
Computational Vision and Medical Image Processing: VipIMAGE 2011Auteurs de l’ouvrage
Jorge, R.M. Natal; Tavares, João Manuel R.S.Éditeur
CRC Press
Ville d’édition
Leiden
Isbn
978-0-415-68395-1
Nombre de pages
440Métadonnées
Afficher la notice complèteAuteur(s)
Fiot, Jean-BaptisteCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Cohen, Laurent D.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Bourgeat, Pierrick
Raniga, Parnesh
Acosta, Oscar
Villemagne, Victor
Salvado, Olivier
Fripp, Jürgen
CSIRO Information and Commuciation Technologies [CSIRO ICT Centre]
Résumé (EN)
Characterizing the variations in anatomy and tissue properties in large populations is a challenging problem in medical imaging. Various statistical analysis, dimension reduction and clustering techniques have been developed to reach this goal. These techniques can provide insight into the effects of demographic and genetic factors on disease progression. They can also be used to improve the accuracy and remove biases in various image segmentation and registration algorithms. In this paper we explore the potential of some non linear dimensionality reduction (NLDR) techniques to establish simple imaging indicators of ageing and Alzheimers Disease (AD) on a large population of multimodality brain images (Magnetic Resonance Imaging (MRI) and PiB Positron Emission Tomography (PET)) composed of 218 patients including healthy control, mild cognitive impairment and AD. Using T1-weighted MR images, we found using laplacian eigenmaps that the main variation across this population was the size of the ventricles. For the grey matter signal in PiB PET images, we built manifolds that showed transition from low to high PiB retention. The combination of the two modalities generated a manifold with different areas that corresponded to different ventricle sizes and beta-amyloid loads.Mots-clés
Brain Imaging; Manifold Learning; Non Linear Dimensionality Reduction; Population AnalysisPublications associées
Affichage des éléments liés par titre et auteur.
-
Fiot, Jean-Baptiste; Fripp, Jürgen; Cohen, Laurent D. (2012) Communication / Conférence
-
Fiot, Jean-Baptiste; Risser, Laurent; Cohen, Laurent D.; Fripp, Jürgen; Vialard, François-Xavier (2012) Communication / Conférence
-
Cohen, Laurent D.; Fiot, Jean-Baptiste; Fripp, Jürgen; Raguet, Hugo; Risser, Laurent; Vialard, François-Xavier (2014) Article accepté pour publication ou publié
-
Fiot, Jean-Baptiste; Cohen, Laurent D.; Raniga, Parnesh; Fripp, Jürgen (2012) Communication / Conférence
-
Fiot, Jean-Baptiste; Cohen, Laurent D.; Raniga, Parnesh; Fripp, Jürgen (2013) Article accepté pour publication ou publié