• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

Compact Representations of Stationary Dynamic Textures

Aujol, Jean-François; Peyré, Gabriel; Ferradans, Sira; Xia, Gui-Song (2012), Compact Representations of Stationary Dynamic Textures, 19th IEEE International Conference on Image Processing (ICIP), 2012 - proceedings, IEEE, p. 2993-2996

Type
Communication / Conférence
Lien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00662719
Date
2012
Titre du colloque
2012 IEEE International Conference on Image Processing (ICIP)
Date du colloque
2012-10
Ville du colloque
Orlando
Pays du colloque
Etats-Unis
Titre de l'ouvrage
19th IEEE International Conference on Image Processing (ICIP), 2012 - proceedings
Éditeur
IEEE
Isbn
978-1-4673-2534-9
Pages
2993-2996
Identifiant publication
http://dx.doi.org/10.1109/ICIP.2012.6467529
Métadonnées
Afficher la notice complète
Auteur(s)
Aujol, Jean-François
Peyré, Gabriel
Ferradans, Sira
Xia, Gui-Song
Résumé (EN)
This paper addresses the problem of modeling stationary color dynamic textures with Gaussian processes. We detail two particular classes of such processes that are parameterized by a small number of compactly supported linear filters, so-called dynamical textons (\emph{dynTextons}). The first class extends previous works on the spot noise texture model to the dynamical setting. It directly estimates the dynTexton to fit a translation-invariant covariance from the exemplar. The second class is a specialization of the auto-regressive (AR) dynamic texture method to the setting of space and time stationary textures. This allows one to parameterize the process covariance using only a few linear filters. Numerical experiments on a database of stationary textures shows that the methods, despite their extreme simplicity, provide state of the art results to synthesize space stationary dynamical texture.
Mots-clés
spot noise; autoregressive process; texture synthesis; Dynamic texture

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Synthesizing and Mixing Stationary Gaussian Texture Models 
    Aujol, Jean-François; Peyré, Gabriel; Ferradans, Sira; Xia, Gui-Song (2014) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Optimal Transport Mixing of Gaussian Texture Models 
    Aujol, Jean-François; Peyré, Gabriel; Xia, Gui-Song; Ferradans, Sira (2012) Document de travail / Working paper
  • Vignette de prévisualisation
    Regularized Discrete Optimal Transport 
    Ferradans, Sira; Papadakis, Nicolas; Peyré, Gabriel; Aujol, Jean-François (2014) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Regularized Discrete Optimal Transport 
    Ferradans, Sira; Papadakis, Nicolas; Rabin, Julien; Peyré, Gabriel; Aujol, Jean-François (2013) Communication / Conférence
  • Vignette de prévisualisation
    Extraction de textures localement parallèles par un espace de Hilbert adapté 
    Maurel, Pierre; Aujol, Jean-François; Peyré, Gabriel (2009-09) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo