The second eigenvalue of the p-Laplacian as p goes to 1
Parini, Enea (2010), The second eigenvalue of the p-Laplacian as p goes to 1, International Journal of Differential Equations, 2010. http://dx.doi.org/10.1155/2010/984671
Type
Article accepté pour publication ou publiéDate
2010Journal name
International Journal of Differential EquationsVolume
2010Publisher
Hindawi
Publication identifier
Metadata
Show full item recordAuthor(s)
Parini, EneaAbstract (EN)
The asymptotic behaviour of the second eigenvalue of the p-Laplacian operator as p goes to 1 is investigated. The limit setting depends only on the geometry of the domain. In the particular case of a planar disc, it is possible to show that the second eigenfunctions are nonradial if p is close enough to 1.Subjects / Keywords
planar disc; p-Laplacian; eigenvalueRelated items
Showing items related by title and author.
-
Parini, Enea (2011) Article accepté pour publication ou publié
-
Charro, Fernando; Parini, Enea (2013) Article accepté pour publication ou publié
-
Parini, Enea; Charro, Fernando (2010) Article accepté pour publication ou publié
-
Parini, Enea; Grumiau, Christopher (2008) Article accepté pour publication ou publié
-
Parini, Enea; Ruf, Bernhard; Tarsi, Cristina (2014) Article accepté pour publication ou publié