
Quasiperiodic motions in the planar three-body problem
Féjoz, Jacques (2002), Quasiperiodic motions in the planar three-body problem, Journal of Differential Equations, 183, 2, p. 303-341. http://dx.doi.org/10.1006/jdeq.2001.4117
Voir/Ouvrir
Type
Article accepté pour publication ou publiéDate
2002Nom de la revue
Journal of Differential EquationsVolume
183Numéro
2Éditeur
Elsevier
Pages
303-341
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Féjoz, JacquesRésumé (EN)
In the direct product of the phase and parameter spaces, we de ne the perturbing region, where the Hamiltonian of the planar three-body problem is Ck-close to the dynamically degenerate Hamiltonian of two uncoupled two-body problems. In this region, the secular systems are the normal forms that one gets by trying to eliminate the mean anomalies from the perturbing function. They are Pöschel-integrable on a transversally Cantor set. This construction is the starting point for proving the existence of and describing several new families of periodic or quasiperiodic orbits: short periodic orbits associated to some secular singularities, which generalize Poincaré's periodic orbits of the second kind (\Les Méthodes nouvelles de la mécanique céleste", Fi rst Vol., Gauthiers-Villars, Paris, 1892{1899); quasiperiodic motions with three (resp. two) frequencies in a rotating frame of reference, which generalize Arnold's solutions (Russian Math. Survey 18 (1963), 85{191) (resp. Lieberman's solu- tions; Celestial Mech. 3 (1971), 408{426); and three-frequency quasiperiodic motions along which the two inner bodies get arbitrarily close to one another an in nite number of times, generalizing the Chenciner-Llibre's invariant "punc- tured tori" (Ergodic Theory Dynamical Systems 8 (1988), 63{72). The proof relies on a sophisticated version of kam theorem, which itself is proved using a normal form theorem of M. Herman ("Démonstration d'un Théorème de V.I. Arnold," Séminaire de Systèmes Dynamiques and Manuscipts, 1998).Mots-clés
three-body problem; secular system; averaging; regularization; KAM theorem; periodic orbitsPublications associées
Affichage des éléments liés par titre et auteur.
-
Féjoz, Jacques; Guardia, Marcel; Kaloshin, Vadim; Roldán, Pablo (2011) Document de travail / Working paper
-
Kirkwood gaps and diffusion along mean motion resonances in the restricted planar three-body problem Féjoz, Jacques; Guardia, Marcel; Kaloshin, Vadim; Roldán, Pablo (2016) Article accepté pour publication ou publié
-
Féjoz, Jacques (2001) Article accepté pour publication ou publié
-
Féjoz, Jacques (2002) Article accepté pour publication ou publié
-
Féjoz, Jacques; Guardia, Marcel (2016) Article accepté pour publication ou publié