dc.contributor.author | Féjoz, Jacques | |
dc.date.accessioned | 2012-02-13T11:42:15Z | |
dc.date.available | 2012-02-13T11:42:15Z | |
dc.date.issued | 2002 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/8135 | |
dc.language.iso | en | en |
dc.subject | three-body problem | en |
dc.subject | secular system | en |
dc.subject | averaging | en |
dc.subject | regularization | en |
dc.subject | KAM theorem | en |
dc.subject | periodic orbits | en |
dc.subject.ddc | 515 | en |
dc.title | Quasiperiodic motions in the planar three-body problem | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | In the direct product of the phase and parameter spaces, we de ne the perturbing region, where the Hamiltonian of the planar three-body problem is Ck-close to the dynamically degenerate Hamiltonian of two uncoupled two-body
problems. In this region, the secular systems are the normal forms that one
gets by trying to eliminate the mean anomalies from the perturbing function.
They are Pöschel-integrable on a transversally Cantor set. This construction
is the starting point for proving the existence of and describing several new
families of periodic or quasiperiodic orbits: short periodic orbits associated
to some secular singularities, which generalize Poincaré's periodic orbits of
the second kind (\Les Méthodes nouvelles de la mécanique céleste", Fi rst Vol.,
Gauthiers-Villars, Paris, 1892{1899); quasiperiodic motions with three (resp.
two) frequencies in a rotating frame of reference, which generalize Arnold's
solutions (Russian Math. Survey 18 (1963), 85{191) (resp. Lieberman's solu-
tions; Celestial Mech. 3 (1971), 408{426); and three-frequency quasiperiodic
motions along which the two inner bodies get arbitrarily close to one another an
in nite number of times, generalizing the Chenciner-Llibre's invariant "punc-
tured tori" (Ergodic Theory Dynamical Systems 8 (1988), 63{72). The proof
relies on a sophisticated version of kam theorem, which itself is proved using a normal form theorem of M. Herman ("Démonstration d'un Théorème de
V.I. Arnold," Séminaire de Systèmes Dynamiques and Manuscipts, 1998). | en |
dc.relation.isversionofjnlname | Journal of Differential Equations | |
dc.relation.isversionofjnlvol | 183 | en |
dc.relation.isversionofjnlissue | 2 | en |
dc.relation.isversionofjnldate | 2002 | |
dc.relation.isversionofjnlpages | 303-341 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1006/jdeq.2001.4117 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Analyse | en |