Classification and Regression Trees on Aggregate Data Modeling: An Application in Acute Myocardial Infarction
Quantin, Catherine; Billard, Lynne; Touati, Myriam; Andreu, N.; Cotin, Y.; Zeller, Manfred; Afonso, Filipe; Battaglia, G.; Seck, Djamal; Le Teuff, G.; Diday, Edwin (2011), Classification and Regression Trees on Aggregate Data Modeling: An Application in Acute Myocardial Infarction, Journal of Probability and Statistics, 2011, p. 523937. http://dx.doi.org/10.1155/2011/523937
Type
Article accepté pour publication ou publiéDate
2011Journal name
Journal of Probability and StatisticsVolume
2011Publisher
Hindawi
Pages
523937
Publication identifier
Metadata
Show full item recordAuthor(s)
Quantin, CatherineService Biostatistiques et Informatique Médicale (CHU de Dijon) [DIM]
Billard, Lynne
Department of Statistics
Touati, Myriam
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Andreu, N.
Service Biostatistiques et Informatique Médicale (CHU de Dijon) [DIM]
Cotin, Y.
Zeller, Manfred
Afonso, Filipe
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Battaglia, G.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Seck, Djamal
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Le Teuff, G.
Service Biostatistiques et Informatique Médicale (CHU de Dijon) [DIM]
Diday, Edwin
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Cardiologists are interested in determining whether the type of hospital pathway followed by a patient is predictive of survival. The study objective was to determine whether accounting for hospital pathways in the selection of prognostic factors of one-year survival after acute myocardial infarction AMI provided a more informative analysis than that obtained by the use of a standard regression tree analysis CART method . Information on AMI was collected for 1095 hospitalized patients over an 18-month period. The construction of pathways followed by patients produced symbolic-valued observations requiring a symbolic regression tree analysis. This analysis was compared with the standard CART analysis using patients as statistical units described by standard data selected TIMI score as the primary predictor variable. For the 1011 84, resp. patients with a lower higher TIMI score, the pathway variable did not appear as a diagnostic variable until the third second stage of the tree construction. For an ecological analysis, again TIMI score was the first predictor variable. However, in a symbolic regression tree analysis using hospital pathways as statistical units, the type of pathway followed was the key predictor variable, showing in particular that pathways involving early admission to cardiology units produced high one-year survival rates.Subjects / Keywords
Acute Myocardial Infarction; Aggregate Data Modeling; Regression Trees; ClassificationRelated items
Showing items related by title and author.
-
Le logiciel SODAS : avancées récentes Un outil pour analyser et visualiser des données symboliques Touati, Myriam; Rahal, Mohamed; Afonso, Filipe; Diday, Edwin (2008) Communication / Conférence
-
Guinot, Christiane; Malvy, Denis; Schémann, Jean-François; Afonso, Filipe; Haddad, Raja; Diday, Edwin (2015) Article accepté pour publication ou publié
-
Afonso, Filipe; Diday, Edwin; Toque, Carole; Afonso, Filipe (2018) Ouvrage
-
Diday, Edwin; Billard, Lynne (2006-01) Chapitre d'ouvrage
-
Billard, Lynne; Diday, Edwin (2003) Article accepté pour publication ou publié