Show simple item record

hal.structure.identifier
dc.contributor.authorSouganidis, Panagiotis E.*
hal.structure.identifier
dc.contributor.authorLions, Pierre-Louis*
dc.date.accessioned2012-02-28T13:17:31Z
dc.date.available2012-02-28T13:17:31Z
dc.date.issued2010
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/8307
dc.language.isoenen
dc.subjectviscosity solutionsen
dc.subjectHamilton-Jacobi equationsen
dc.subjectStochastic homogenizationen
dc.subject.ddc519en
dc.titleStochastic homogenization of Hamilton-Jacobi and "Viscous"-Hamilton-Jacobi equations with convexen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherDepartment of mathematics http://www.math.uchicago.edu/ Université de Chicago;États-Unis
dc.description.abstractenIn this note we revisit the homogenization theory of Hamilton-Jacobi and “viscous”- Hamilton-Jacobi partial differential equations with convex nonlinearities in stationary ergodic envi- ronments. We present a new simple proof for the homogenization in probability. The argument uses some a priori bounds (uniform modulus of continuity) on the solution and the convexity and coer- civity (growth) of the nonlinearity. It does not rely, however, on the control interpretation formula of the solution as was the case with all previously known proofs. We also introduce a new formula for the effective Hamiltonian for Hamilton-Jacobi and “viscous” Hamilton-Jacobi equations.en
dc.relation.isversionofjnlnameCommunications in Mathematical Sciences
dc.relation.isversionofjnlvol8en
dc.relation.isversionofjnlissue2en
dc.relation.isversionofjnldate2010
dc.relation.isversionofjnlpages627-637en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherInternational Pressen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record