Noisy low-rank matrix completion with general sampling distribution
Klopp, Olga (2014), Noisy low-rank matrix completion with general sampling distribution, Bernoulli, 20, 1, p. 1-393. http://dx.doi.org/10.3150/12-BEJ486
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00675413Date
2014Journal name
BernoulliVolume
20Number
1Publisher
Bernoulli Society for Mathematical Statistics and Probability
Pages
1-393
Publication identifier
Metadata
Show full item recordAuthor(s)
Klopp, OlgaAbstract (EN)
In the present paper we consider the problem of matrix completion with noise for general sampling schemes. Unlike previous works, in our construction we do not need to know or to evaluate the sampling distribution or the variance of the noise. We propose new nuclear-norm penalized estimators, one of them of the ''square-root'' type. We prove that, up to a logarithmic factor, our estimators achieve optimal rates with respect to the estimation error.Subjects / Keywords
high-dimensional sparse model; unknown variance; low rank matrix estimation; matrix completionRelated items
Showing items related by title and author.
-
Waldspurger, Irène (2021) Document de travail / Working paper
-
Klopp, Olga (2011) Document de travail / Working paper
-
Klopp, Olga (2011) Article accepté pour publication ou publié
-
Catala, Paul; Duval, Vincent; Peyré, Gabriel (2017) Article accepté pour publication ou publié
-
Catala, Paul; Duval, Vincent; Peyré, Gabriel (2019) Article accepté pour publication ou publié