Geodesics for a class of distances in the space of probability measures
Nazaret, Bruno; Carlier, Guillaume; Cardaliaguet, Pierre (2013), Geodesics for a class of distances in the space of probability measures, Calculus of Variations and Partial Differential Equations, 48, 3-4, p. 395-420. http://dx.doi.org/10.1007/s00526-012-0555-7
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00686908Date
2013Journal name
Calculus of Variations and Partial Differential EquationsVolume
48Number
3-4Publisher
Springer
Pages
395-420
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this paper, we study the characterization of geodesics for a class of distances between probability measures introduced by Dolbeault, Nazaret and Savar e. We first prove the existence of a potential function and then give necessary and suffi cient optimality conditions that take the form of a coupled system of PDEs somehow similar to the Mean-Field-Games system of Lasry and Lions. We also consider an equivalent formulation posed in a set of probability measures over curves.Subjects / Keywords
optimality conditions; geodesics in the space of probability measures; power mobility; dynamical transport distancesRelated items
Showing items related by title and author.
-
Savaré, Giuseppe; Nazaret, Bruno; Dolbeault, Jean (2009) Article accepté pour publication ou publié
-
Carlier, Guillaume; Nazaret, Bruno (2008) Article accepté pour publication ou publié
-
Carlier, Guillaume; Agueh, Martial (2009) Article accepté pour publication ou publié
-
Dana, Rose-Anne; Carlier, Guillaume (2001) Document de travail / Working paper
-
Buttazzo, Giuseppe; Carlier, Guillaume; Laborde, Maxime (2018) Article accepté pour publication ou publié