Young measures, superposition and transport
Bernard, Patrick (2008), Young measures, superposition and transport, Indiana University Mathematics Journal, 57, 1, p. 247-276. http://dx.doi.org/10.1512/iumj.2008.57.3163
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00124907/en/Date
2008Journal name
Indiana University Mathematics JournalVolume
57Number
1Publisher
Bloomington, Ind.
Pages
247-276
Publication identifier
Metadata
Show full item recordAbstract (EN)
We discuss a space of Young measures in connection with some variational problems. We use it to present a proof of the Theorem of Tonelli on the existence of minimizing curves. We generalize a recent result of Ambrosio, Gigli and Savaré on the decomposition of the weak solutions of the transport equation. We also prove, in the context of Mather theory, the equality between Closed measures and Holonomic measures.Subjects / Keywords
Equations différentiellesRelated items
Showing items related by title and author.
-
Bernard, Patrick; Bessi, Ugo (2010) Article accepté pour publication ou publié
-
Bernard, Patrick; Buffoni, Boris (2007) Article accepté pour publication ou publié
-
Fenchel-Young inequality with a remainder and applications to convex duality and optimal transport Carlier, Guillaume (2022) Document de travail / Working paper
-
Aubert, Gilles; Tahraoui, Rabah (1999) Article accepté pour publication ou publié
-
Bernard, Patrick (2010) Article accepté pour publication ou publié