• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Formulation and numerical solution of finite-level quantum optimal control problems

Salomon, Julien; Borzì, Alfio; Volkwein, Stefan (2008), Formulation and numerical solution of finite-level quantum optimal control problems, Journal of Computational and Applied Mathematics, 216, 1, p. 170-197. http://dx.doi.org/10.1016/j.cam.2007.04.029

Type
Article accepté pour publication ou publié
Date
2008
Journal name
Journal of Computational and Applied Mathematics
Volume
216
Number
1
Pages
170-197
Publication identifier
http://dx.doi.org/10.1016/j.cam.2007.04.029
Metadata
Show full item record
Author(s)
Salomon, Julien
Borzì, Alfio
Volkwein, Stefan
Abstract (EN)
Optimal control of finite-level quantum systems is investigated, and iterative solution schemes for the optimization of a control representing laser pulses are developed. The purpose of this external field is to channel the system's wavefunction between given states in its most efficient way. Physically motivated constraints, such as limited laser resources or population suppression of certain states, are accounted for through an appropriately chosen cost functional. First-order necessary optimality conditions and second-order sufficient optimality conditions are investigated. For solving the optimal control problems, a cascadic non-linear conjugate gradient scheme and a monotonic scheme are discussed. Results of numerical experiments with a representative finite-level quantum system demonstrate the effectiveness of the optimal control formulation and efficiency and robustness of the proposed approaches.
Subjects / Keywords
Cascadic acceleration; Monotonic schemes; Non-linear conjugate gradient method; Optimal control theory; Optimality conditions; Quantum systems

Related items

Showing items related by title and author.

  • Thumbnail
    Constructive solution of a bilinear optimal control problem for a Schrödinger equation 
    Salomon, Julien; Baudouin, Lucie (2008) Article accepté pour publication ou publié
  • Thumbnail
    On the relationship between the local tracking procedures and monotonic schemes in quantum optimal control 
    Salomon, Julien; Turinici, Gabriel (2006) Article accepté pour publication ou publié
  • Thumbnail
    Fully efficient time-parallelized quantum optimal control algorithm 
    Riahi, Mohamed Kamel; Salomon, Julien; Glaser, Steffen J.; Sugny, Dominique (2016) Article accepté pour publication ou publié
  • Thumbnail
    A monotonic method for solving nonlinear optimal control problems with concave dependence on the state 
    Salomon, Julien; Turinici, Gabriel (2011) Article accepté pour publication ou publié
  • Thumbnail
    Parareal in time intermediate targets methods for optimal control problems 
    Maday, Yvon; Riahi, Mohamed Kamel; Salomon, Julien (2013) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo