Orbitally-Stable States in Generalized Hartree-Fock Theory
Dolbeault, Jean; Felmer, Patricio; Lewin, Mathieu (2009), Orbitally-Stable States in Generalized Hartree-Fock Theory, Mathematical Models and Methods in Applied Sciences, 19, 3, p. 347-367. http://dx.doi.org/10.1142/S0218202509003450
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00250383/en/Date
2009Journal name
Mathematical Models and Methods in Applied SciencesVolume
19Number
3Publisher
World Scientific
Pages
347-367
Publication identifier
Metadata
Show full item recordAbstract (EN)
This paper is devoted to the Hartree-Fock model with temperature in the euclidean space. For large classes of free energy functionals, minimizers are obtained as long as the total charge of the system does not exceed a threshold which depends on the temperature. The usual Hartree-Fock model is recovered in the zero temperature limit. An orbital stability result for the Cauchy problem is deduced from the variational approach.Subjects / Keywords
compact self-adjoint operators; trace-class operators; mixed states; occupation numbers; Lieb-Thirring inequality; Schrödinger operator; asymptotic distribution of eigenvalues; free energy; temperature; entropy; Hartree-Fock model; self-consistent potential; orbital stability; nonlinear equation; loss of compactnessRelated items
Showing items related by title and author.
-
Lewin, Mathieu (2017) Article accepté pour publication ou publié
-
Gontier, David; Lewin, Mathieu (2019) Article accepté pour publication ou publié
-
Ghimenti, Marco; Lewin, Mathieu (2009) Article accepté pour publication ou publié
-
Gontier, David; Hainzl, Christian; Lewin, Mathieu (2019-05) Article accepté pour publication ou publié
-
Séré, Eric; Lewin, Mathieu; Hainzl, Christian; Gravejat, Philippe (2012) Communication / Conférence