• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Orbitally-Stable States in Generalized Hartree-Fock Theory

Dolbeault, Jean; Felmer, Patricio; Lewin, Mathieu (2009), Orbitally-Stable States in Generalized Hartree-Fock Theory, Mathematical Models and Methods in Applied Sciences, 19, 3, p. 347-367. http://dx.doi.org/10.1142/S0218202509003450

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00250383/en/
Date
2009
Journal name
Mathematical Models and Methods in Applied Sciences
Volume
19
Number
3
Publisher
World Scientific
Pages
347-367
Publication identifier
http://dx.doi.org/10.1142/S0218202509003450
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc
Felmer, Patricio
Lewin, Mathieu cc
Abstract (EN)
This paper is devoted to the Hartree-Fock model with temperature in the euclidean space. For large classes of free energy functionals, minimizers are obtained as long as the total charge of the system does not exceed a threshold which depends on the temperature. The usual Hartree-Fock model is recovered in the zero temperature limit. An orbital stability result for the Cauchy problem is deduced from the variational approach.
Subjects / Keywords
compact self-adjoint operators; trace-class operators; mixed states; occupation numbers; Lieb-Thirring inequality; Schrödinger operator; asymptotic distribution of eigenvalues; free energy; temperature; entropy; Hartree-Fock model; self-consistent potential; orbital stability; nonlinear equation; loss of compactness

Related items

Showing items related by title and author.

  • Thumbnail
    Existence of Hartree-Fock excited states for atoms and molecules 
    Lewin, Mathieu (2017) Article accepté pour publication ou publié
  • Thumbnail
    Spin symmetry breaking in the translation-invariant Hartree-Fock Uniform Electron Gas 
    Gontier, David; Lewin, Mathieu (2019) Article accepté pour publication ou publié
  • Thumbnail
    Properties of the periodic Hartree-Fock minimizer 
    Ghimenti, Marco; Lewin, Mathieu (2009) Article accepté pour publication ou publié
  • Thumbnail
    Lower Bound on the Hartree-Fock Energy of the Electron Gas 
    Gontier, David; Hainzl, Christian; Lewin, Mathieu (2019-05) Article accepté pour publication ou publié
  • Thumbnail
    Two Hartree-Fock models for the vacuum polarization 
    Séré, Eric; Lewin, Mathieu; Hainzl, Christian; Gravejat, Philippe (2012) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo