Quantitative and qualitative Kac's chaos on the Boltzmann's sphere
Carrapatoso, Kleber (2015), Quantitative and qualitative Kac's chaos on the Boltzmann's sphere, Annales de l'I.H.P. Probabilités et Statistiques, 51, 3, p. 993-1039. 10.1214/14-AIHP612
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/abs/1205.1241v3Date
2015Journal name
Annales de l'I.H.P. Probabilités et StatistiquesVolume
51Number
3Publisher
Gauthier-Villars
Pages
993-1039
Publication identifier
Metadata
Show full item recordAuthor(s)
Carrapatoso, KleberAbstract (EN)
We investigate the construction of chaotic probability measures on the Boltzmann's sphere, which is the state space of the stochastic process of a many-particle system undergoing a dynamics preserving energy and momentum. Firstly, based on a version of the local Central Limit Theorem (or Berry-Essenn theorem), we construct a sequence of probabilities that is Kac chaotic and we prove a quantitative rate of convergence. Then, we investigate a stronger notion of chaos, namely entropic chaos introduced in \cite{CCLLV}, and we prove, with quantitative rate, that this same sequence is also entropically chaotic. Furthermore, we investigate more general class of probability measures on the Boltzmann's sphere. Using the HWI inequality we prove that a Kac chaotic probability with bounded Fisher's information is entropically chaotic and we give a quantitative rate. We also link different notions of chaos, proving that Fisher's information chaos, introduced in \cite{HaurayMischler}, is stronger than entropic chaos, which is stronger than Kac's chaos. We give a possible answer to \cite[Open Problem 11]{CCLLV} in the Boltzmann's sphere's framework. Finally, applying our previous results to the recent results on propagation of chaos for the Boltzmann equation \cite{MMchaos}, we prove a quantitative rate for the propagation of entropic chaos for the Boltzmann equation with Maxwellian molecules.Subjects / Keywords
mean-field limitRelated items
Showing items related by title and author.
-
Einav, Amit; Carrapatoso, Kleber (2013) Article accepté pour publication ou publié
-
Carrapatoso, Kleber (2013-12) Thèse
-
Carrapatoso, Kleber (2016) Article accepté pour publication ou publié
-
Carrapatoso, Kleber; Dolbeault, Jean; Hérau, Frédéric; Mischler, Stéphane; Mouhot, Clément (2020) Document de travail / Working paper
-
Carrapatoso, Kleber; Tristani, Isabelle; Wu, Kung-Chien (2016) Article accepté pour publication ou publié