• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Quantitative and qualitative Kac's chaos on the Boltzmann's sphere

Carrapatoso, Kleber (2015), Quantitative and qualitative Kac's chaos on the Boltzmann's sphere, Annales de l'I.H.P. Probabilités et Statistiques, 51, 3, p. 993-1039. 10.1214/14-AIHP612

Type
Article accepté pour publication ou publié
External document link
https://arxiv.org/abs/1205.1241v3
Date
2015
Journal name
Annales de l'I.H.P. Probabilités et Statistiques
Volume
51
Number
3
Publisher
Gauthier-Villars
Pages
993-1039
Publication identifier
10.1214/14-AIHP612
Metadata
Show full item record
Author(s)
Carrapatoso, Kleber
Abstract (EN)
We investigate the construction of chaotic probability measures on the Boltzmann's sphere, which is the state space of the stochastic process of a many-particle system undergoing a dynamics preserving energy and momentum. Firstly, based on a version of the local Central Limit Theorem (or Berry-Essenn theorem), we construct a sequence of probabilities that is Kac chaotic and we prove a quantitative rate of convergence. Then, we investigate a stronger notion of chaos, namely entropic chaos introduced in \cite{CCLLV}, and we prove, with quantitative rate, that this same sequence is also entropically chaotic. Furthermore, we investigate more general class of probability measures on the Boltzmann's sphere. Using the HWI inequality we prove that a Kac chaotic probability with bounded Fisher's information is entropically chaotic and we give a quantitative rate. We also link different notions of chaos, proving that Fisher's information chaos, introduced in \cite{HaurayMischler}, is stronger than entropic chaos, which is stronger than Kac's chaos. We give a possible answer to \cite[Open Problem 11]{CCLLV} in the Boltzmann's sphere's framework. Finally, applying our previous results to the recent results on propagation of chaos for the Boltzmann equation \cite{MMchaos}, we prove a quantitative rate for the propagation of entropic chaos for the Boltzmann equation with Maxwellian molecules.
Subjects / Keywords
mean-field limit

Related items

Showing items related by title and author.

  • Thumbnail
    Chaos and Entropic Chaos in Kac's Model Without High Moments 
    Einav, Amit; Carrapatoso, Kleber (2013) Article accepté pour publication ou publié
  • Thumbnail
    Théorèmes asymptotiques pour les équations de Boltzmann et de Landau 
    Carrapatoso, Kleber (2013-12) Thèse
  • Thumbnail
    Propagation of chaos for the spatially homogeneous Landau equation for maxwellian molecules 
    Carrapatoso, Kleber (2016) Article accepté pour publication ou publié
  • Thumbnail
    Weighted Korn and Poincaré-Korn inequalities in the Euclidean space and associated operators 
    Carrapatoso, Kleber; Dolbeault, Jean; Hérau, Frédéric; Mischler, Stéphane; Mouhot, Clément (2020) Document de travail / Working paper
  • Thumbnail
    Cauchy problem and exponential stability for the inhomogeneous Landau equation 
    Carrapatoso, Kleber; Tristani, Isabelle; Wu, Kung-Chien (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo