• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

About $L^p$ estimates for the spatially homogeneous Boltzmann equation

Desvillettes, Laurent; Mouhot, Clément (2005), About $L^p$ estimates for the spatially homogeneous Boltzmann equation, Annales de l'Institut Henri Poincaré. Analyse non linéaire, 22, 2, p. 127-142. http://dx.doi.org/10.1016/j.anihpc.2004.03.002

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00087260/en/
Date
2005
Journal name
Annales de l'Institut Henri Poincaré. Analyse non linéaire
Volume
22
Number
2
Publisher
Elsevier
Pages
127-142
Publication identifier
http://dx.doi.org/10.1016/j.anihpc.2004.03.002
Metadata
Show full item record
Author(s)
Desvillettes, Laurent
Mouhot, Clément
Abstract (EN)
For the homogeneous Boltzmann equation with (cutoff or non cutoff ) hard potentials, we prove estimates of propagation of Lp norms with a weight $(1+ |x|^2)^q/2$ ($1 < p < +\infty$, $q \in \R_+$ large enough), as well as appearance of such weights. The proof is based on some new functional inequalities for the collision operator, proven by elementary means.
Subjects / Keywords
integrability estimates; non-cutoff; spatially homogeneous; Boltzmann equation

Related items

Showing items related by title and author.

  • Thumbnail
    Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials. 
    Desvillettes, Laurent; Mouhot, Clément (2007) Article accepté pour publication ou publié
  • Thumbnail
    Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions 
    Desvillettes, Laurent; Mouhot, Clément (2009) Article accepté pour publication ou publié
  • Thumbnail
    Regularity theory for the spatially homogeneous Boltzmann equation with cut-off 
    Mouhot, Clément; Villani, Cédric (2004) Article accepté pour publication ou publié
  • Thumbnail
    Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials 
    Mouhot, Clément (2006) Article accepté pour publication ou publié
  • Thumbnail
    Celebrating Cercignani's conjecture for the Boltzmann equation 
    Desvillettes, Laurent; Mouhot, Clément; Villani, Cédric (2011) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo