About $L^p$ estimates for the spatially homogeneous Boltzmann equation
Desvillettes, Laurent; Mouhot, Clément (2005), About $L^p$ estimates for the spatially homogeneous Boltzmann equation, Annales de l'Institut Henri Poincaré. Analyse non linéaire, 22, 2, p. 127-142. http://dx.doi.org/10.1016/j.anihpc.2004.03.002
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00087260/en/Date
2005Journal name
Annales de l'Institut Henri Poincaré. Analyse non linéaireVolume
22Number
2Publisher
Elsevier
Pages
127-142
Publication identifier
Metadata
Show full item recordAbstract (EN)
For the homogeneous Boltzmann equation with (cutoff or non cutoff ) hard potentials, we prove estimates of propagation of Lp norms with a weight $(1+ |x|^2)^q/2$ ($1 < p < +\infty$, $q \in \R_+$ large enough), as well as appearance of such weights. The proof is based on some new functional inequalities for the collision operator, proven by elementary means.Subjects / Keywords
integrability estimates; non-cutoff; spatially homogeneous; Boltzmann equationRelated items
Showing items related by title and author.
-
Desvillettes, Laurent; Mouhot, Clément (2007) Article accepté pour publication ou publié
-
Desvillettes, Laurent; Mouhot, Clément (2009) Article accepté pour publication ou publié
-
Mouhot, Clément; Villani, Cédric (2004) Article accepté pour publication ou publié
-
Mouhot, Clément (2006) Article accepté pour publication ou publié
-
Desvillettes, Laurent; Mouhot, Clément; Villani, Cédric (2011) Article accepté pour publication ou publié