• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - Request a copy

Resilience and optimization of identifiable bipartite graphs

Rios-Solis, Yasmin Agueda; Monnot, Jérôme; Milanic, Martin; Fritzilas, Epameinondas (2013), Resilience and optimization of identifiable bipartite graphs, Discrete Applied Mathematics, 161, 4-5, p. 593-603. 10.1016/j.dam.2012.01.005

Type
Article accepté pour publication ou publié
Date
2013
Nom de la revue
Discrete Applied Mathematics
Volume
161
Numéro
4-5
Éditeur
Elsevier
Pages
593-603
Identifiant publication
10.1016/j.dam.2012.01.005
Métadonnées
Afficher la notice complète
Auteur(s)
Rios-Solis, Yasmin Agueda

Monnot, Jérôme cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Milanic, Martin

Fritzilas, Epameinondas
Résumé (EN)
A bipartite graph G=(L,R;E) with at least one edge is said to be identifiable if for every vertex v∈L, the subgraph induced by its non-neighbors has a matching of cardinality |L|−1. This definition arises in the context of low-rank matrix factorization and is motivated by signal processing applications. In this paper, we study the resilience of identifiability with respect to edge additions, edge deletions and edge modifications. These can all be seen as measures of evaluating how strongly a bipartite graph possesses the identifiability property. On the one hand, we show that computing the resilience of this non-monotone property can be done in polynomial time for edge additions or edge modifications. On the other hand, for edge deletions this is an NP-complete problem. Our polynomial results are based on polynomial algorithms for computing the surplus of a bipartite graph G and finding a tight set in G, which might be of independent interest. We also deal with some complexity results for the optimization problem related to the isolation of a smallest set J⊆L that, together with all vertices with neighbors only in J, induces an identifiable subgraph. We obtain an APX-hardness result for the problem and identify some polynomially solvable cases.
Mots-clés
NP-complete problem; Identifiability; Resilience; Matching; Bipartitegraph

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    A matching-related property of bipartite graphs with applications in signal processing 
    Fritzilas, Epameinondas; Milanic, Martin; Monnot, Jérôme; Rios-Solis, Yasmin Agueda (2009) Document de travail / Working paper
  • Vignette de prévisualisation
    The exact weighted independent set problem in perfect graphs and related classes 
    Monnot, Jérôme; Milanic, Martin (2009) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    The complexity of the Pk partition problem and related problems in bipartite graphs 
    Monnot, Jérôme; Toulouse, Sophie (2005) Communication / Conférence
  • Vignette de prévisualisation
    The complexity of the Pk partition problem and related problems in bipartite graphs 
    Monnot, Jérôme; Toulouse, Sophie (2005) Communication / Conférence
  • Vignette de prévisualisation
    Complexity and algorithms for constant diameter augmentation problems 
    Kim, Eun Jung; Milanic, Martin; Monnot, Jérôme; Picouleau, Christophe (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo