Batch self-organizing maps based on city-block distances for interval variables
De Melo, Filipe M.; Bertrand, Patrice; De A. T. De Carvalho, Francisco (2012), Batch self-organizing maps based on city-block distances for interval variables. https://basepub.dauphine.fr/handle/123456789/9692
Type
Document de travail / Working paperExternal document link
http://hal.archives-ouvertes.fr/hal-00706519Date
2012Publisher
Université Paris-Dauphine
Published in
Paris
Pages
15
Metadata
Show full item recordAbstract (EN)
The Kohonen Self Organizing Map (SOM) is an unsupervised neural network method with a competitive learning strategy which has both clustering and visualization properties. Interval-valued data arise in practical situations such as recording monthly interval temperatures at meteorological stations, daily interval stock prices, etc. Batch SOM algorithms based on adaptive and non-adaptive city-block distances, suitable for objects described by interval-valued variables, that, for a fixed epoch, optimizes a cost function, are presented. The performance, robustness and usefulness of these SOM algorithms are illustrated with real interval-valued data sets.Subjects / Keywords
Adaptive distances; City-block distances; Interval-valued data; Self-organizing mapsRelated items
Showing items related by title and author.
-
Carvalho, Francisco de A.T. de; Bertrand, Patrice; Simões, Eduardo C. (2016) Article accepté pour publication ou publié
-
Bertrand, Patrice; Diatta, Jean (2022) Document de travail / Working paper
-
Bertrand, Patrice; Diatta, Jean (2024) Article accepté pour publication ou publié
-
Silva, K.P.; De A. T. De Carvalho, Francisco; Csernel, Marc (2008) Communication / Conférence
-
Lamirel, Jean-Charles; Cottrell, Marie; Olteanu, Madalina (2017) Ouvrage