Critical Gaussian Multiplicative Chaos: Convergence of the Derivative Martingale
Duplantier, Bertrand; Rhodes, Rémi; Sheffield, Scott; Vargas, Vincent (2014), Critical Gaussian Multiplicative Chaos: Convergence of the Derivative Martingale, Annals of Probability, 42, 5, p. 1769-1808. 10.1214/13-AOP890
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/abs/1206.1671v3Date
2014Journal name
Annals of ProbabilityVolume
42Number
5Publisher
Institute of Mathematical Statistics
Pages
1769-1808
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this paper, we study Gaussian multiplicative chaos in the critical case. We show that the so-called derivative martingale, introduced in the context of branching Brownian motions and branching random walks, converges almost surely (in all dimensions) to a random measure with full support. We also show that the limiting measure has no atom. In connection with the derivative martingale, we write explicit conjectures about the glassy phase of log-correlated Gaussian potentials and the relation with the asymptotic expansion of the maximum of log-correlated Gaussian random variables.Subjects / Keywords
multiplicative chaos; scale invariance; kpz; star equation; random measureRelated items
Showing items related by title and author.
-
Vargas, Vincent; Sheffield, Scott; Duplantier, Bertrand; Rhodes, Rémi (2014) Article accepté pour publication ou publié
-
Vargas, Vincent; Rhodes, Rémi; Jin, Xiong; Barral, Julien (2013) Article accepté pour publication ou publié
-
Vargas, Vincent; Rhodes, Rémi; Chevillard, Laurent (2013) Article accepté pour publication ou publié
-
Lacoin, Hubert; Rhodes, Rémi; Vargas, Vincent (2015) Article accepté pour publication ou publié
-
Sohier, Julien; Vargas, Vincent; Rhodes, Rémi (2014) Article accepté pour publication ou publié