• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

A single-exponential FPT algorithm for the K4-minor cover problem

Philip, Geevarghese; Paul, Christophe; Kim, Eun Jung (2015), A single-exponential FPT algorithm for the K4-minor cover problem, Journal of Computer and System Sciences, 81, 1, p. 186-207. 10.1016/j.jcss.2014.05.001

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/1204.1417v1
Date
2015
Journal name
Journal of Computer and System Sciences
Volume
81
Number
1
Publisher
Elsevier
Pages
186-207
Publication identifier
10.1016/j.jcss.2014.05.001
Metadata
Show full item record
Author(s)
Philip, Geevarghese

Paul, Christophe

Kim, Eun Jung
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Given an input graph G and an integer k, the parameterized K4 -minor cover problem asks whether there is a set S of at most k vertices whose deletion results in a K4 -minor-free graph, or equivalently in a graph of treewidth at most 2. This problem is inspired by two well-studied parameterized vertex deletion problems, Vertex Cover and Feedback Vertex Set , which can also be expressed as Treewidth- t Vertex Deletion problems: t = 0 for Vertex Cover and t = 1 for Feedback Vertex Set . While a single-exponential FPT algorithm has been known for a long time for Vertex Cover , such an algorithm for Feedback Vertex Set was devised comparatively recently. While it is known to be unlikely that Treewidth- t Vertex Deletion can be solved in time co ( k ) nO (1) , it was open whether the K4 -minor cover could be solved in single-exponential FPT time, i.e. in ck nO (1) time. This paper answers this question in the a rmative.
Subjects / Keywords
Vertex Cover; FPT time

Related items

Showing items related by title and author.

  • Thumbnail
    Linear Kernels and Single-Exponential Algorithms Via Protrusion Decompositions 
    Kim, Eun Jung; Langer, Alexander; Paul, Christophe; Reidl, Felix; Rossmanith, Peter; Sau Valls, Ignasi (2016) Article accepté pour publication ou publié
  • Thumbnail
    Linear Kernels and Single-Exponential Algorithms via Protrusion Decompositions 
    Kim, Eun Jung; Langer, Alexander; Paul, Christophe; Reidl, Felix; Rossmanith, Peter; Sau Valls, Ignasi; Sikdar, Somnath (2013-07) Communication / Conférence
  • Thumbnail
    An FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion 
    Kanté, Mamadou Moustapha; Kim, Eun Jung; Kwon, O-joung; Paul, Christophe (2017) Article accepté pour publication ou publié
  • Thumbnail
    An FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion 
    Paul, Christophe; Kim, Eun Jung; Kanté, Mamadou Moustapha; Kwon, O-joung (2015) Communication / Conférence
  • Thumbnail
    An FPT 2-Approximation for Tree-Cut Decomposition 
    Kim, Eun Jung; Oum, Sang-il; Paul, Christophe; Sau Valls, Ignasi; Thilikos, Dimitrios M. (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo