On Exact Algorithms for Permutation CSP
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Kim, Eun Jung | * |
hal.structure.identifier | Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier [LIRMM] | |
dc.contributor.author | Gonçalves, Daniel
HAL ID: 7100 | * |
dc.date.accessioned | 2012-07-16T12:39:46Z | |
dc.date.available | 2012-07-16T12:39:46Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0304-3975 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/9755 | |
dc.language.iso | en | en |
dc.subject | Arity | |
dc.subject | Permutation CSP | |
dc.subject | Betweenness | |
dc.subject | Feedback Arc Set | |
dc.subject.ddc | 511 | en |
dc.title | On Exact Algorithms for Permutation CSP | |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | LIRMM, Univ. Montpellier 2 and CNRS;France | |
dc.description.abstracten | In the Permutation Constraint Satisfaction Problem (Permutation CSP) we are given a set of variables V and a set of constraints C, in which constraint s are tuples of elem ent s of V . The goal is to find a total ordering of the variables, π : V → [1, . . . , |V |], which satisfies as m any constraints as possible. A constraint ( v1, v2, . . . , vk) is satisfied by an ordering π when π ( v1) < π ( v2) < . . . < π ( vk) . An instance has arity k if all the constraint s involve at most k elements. This problem expresses a variety of permut at ion problem s including Feedback Arc Set an d Betweenness problems. A naïve algorithm , listing all then! permutation s, requires 2O(n log n) time. Interestingly, Permutation CSP for arity 2 or 3 can be solved by Held - Karptype algorithms in time O ∗ ( 2n) , but no algorithm is known for arity at least 4 with running time significantly better than 2O(n log n). In this paper we resolve the gap by showing that Arity 4 Permutation CSP can not be solved in time 2o(n log n) unless ETH fails. | |
dc.relation.isversionofjnlname | Theoretical Computer Science | |
dc.relation.isversionofjnlvol | 511 | |
dc.relation.isversionofjnldate | 2013 | |
dc.relation.isversionofjnlpages | 109-116 | |
dc.relation.isversionofdoi | 10.1016/j.tcs.2012.10.035 | |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Elsevier | |
dc.subject.ddclabel | Principes généraux des mathématiques | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | oui | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.relation.Isversionofjnlpeerreviewed | oui | |
dc.relation.Isversionofjnlpeerreviewed | oui | |
dc.date.updated | 2016-05-28T14:09:00Z | |
hal.faultCode | {"duplicate-entry":{"lirmm-01263918":{"doi":"1.0"}}} | |
hal.author.function | aut | |
hal.author.function | aut |