The stable trees are nested
Haas, Bénédicte; Curien, Nicolas (2013), The stable trees are nested, Probability Theory and Related Fields, 157, 3-4, p. 847-883. http://dx.doi.org/10.1007/s00440-012-0472-x
Type
Article accepté pour publication ou publiéExternal document link
http://fr.arxiv.org/abs/1207.5418Date
2013Journal name
Probability Theory and Related FieldsVolume
157Number
3-4Publisher
Springer
Pages
847-883
Publication identifier
Metadata
Show full item recordAbstract (EN)
We show that we can construct simultaneously all the stable trees as a nested family. More precisely, if $1 < a < a' \leq 2$ we prove that hidden inside any a-stable tree we can find a version of an a'-stable tree rescaled by an independent Mittag-Leffler type distribution. This tree can be explicitly constructed by a pruning procedure of the underlying stable tree or by a modification of the fragmentation associated with it. Our proofs are based on a recursive construction due to Marchal which is proved to converge almost surely towards a stable tree.Subjects / Keywords
Marchal's algorithm; stable Levy trees; dissipative self-similar fragmentations; pruningRelated items
Showing items related by title and author.
-
Curien, Nicolas; Haas, Bénédicte; Kortchemski, Igor (2015) Article accepté pour publication ou publié
-
Goldschmidt, Christina; Haas, Bénédicte (2015) Article accepté pour publication ou publié
-
Goldschmidt, Christina; Haas, Bénédicte (2010) Article accepté pour publication ou publié
-
Haas, Bénédicte; Miermont, Grégory (2004) Article accepté pour publication ou publié
-
Haas, Bénédicte; Miermont, Grégory (2012) Article accepté pour publication ou publié