• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

The stable trees are nested

Haas, Bénédicte; Curien, Nicolas (2013), The stable trees are nested, Probability Theory and Related Fields, 157, 3-4, p. 847-883. http://dx.doi.org/10.1007/s00440-012-0472-x

Type
Article accepté pour publication ou publié
External document link
http://fr.arxiv.org/abs/1207.5418
Date
2013
Journal name
Probability Theory and Related Fields
Volume
157
Number
3-4
Publisher
Springer
Pages
847-883
Publication identifier
http://dx.doi.org/10.1007/s00440-012-0472-x
Metadata
Show full item record
Author(s)
Haas, Bénédicte
Curien, Nicolas
Abstract (EN)
We show that we can construct simultaneously all the stable trees as a nested family. More precisely, if $1 < a < a' \leq 2$ we prove that hidden inside any a-stable tree we can find a version of an a'-stable tree rescaled by an independent Mittag-Leffler type distribution. This tree can be explicitly constructed by a pruning procedure of the underlying stable tree or by a modification of the fragmentation associated with it. Our proofs are based on a recursive construction due to Marchal which is proved to converge almost surely towards a stable tree.
Subjects / Keywords
Marchal's algorithm; stable Levy trees; dissipative self-similar fragmentations; pruning

Related items

Showing items related by title and author.

  • Thumbnail
    The CRT is the scaling limit of random dissections 
    Curien, Nicolas; Haas, Bénédicte; Kortchemski, Igor (2015) Article accepté pour publication ou publié
  • Thumbnail
    A line-breaking construction of the stable trees 
    Goldschmidt, Christina; Haas, Bénédicte (2015) Article accepté pour publication ou publié
  • Thumbnail
    Behavior near the extinction time in self-similar fragmentations I: the stable case 
    Goldschmidt, Christina; Haas, Bénédicte (2010) Article accepté pour publication ou publié
  • Thumbnail
    The genealogy of self-similar fragmentations with negative index as a continuum random tree 
    Haas, Bénédicte; Miermont, Grégory (2004) Article accepté pour publication ou publié
  • Thumbnail
    Scaling limits of Markov branching trees, with applications to Galton-Watson and random unordered trees 
    Haas, Bénédicte; Miermont, Grégory (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo