Show simple item record

dc.contributor.authorMonneau, Régis
dc.contributor.authorForcadel, Nicolas
HAL ID: 171794
ORCID: 0000-0003-4141-8385
dc.contributor.authorAl Haj, Mohammad
dc.date.accessioned2012-08-28T11:41:10Z
dc.date.available2012-08-28T11:41:10Z
dc.date.issued2013
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/9873
dc.language.isoenen
dc.subjectcomparison principleen
dc.subjectviscosity solutionsen
dc.subjecttraveling wavesen
dc.subjectFrenkel-Kontorova modelsen
dc.subject.ddc515en
dc.titleExistence and uniqueness of traveling waves for fully overdamped Frenkel-Kontorova modelsen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherCOMMANDS (INRIA Saclay - Ile de France) http://www.cmap.polytechnique.fr/commands/ INRIA – CNRS : UMR7641 – Polytechnique - X – ENSTA ParisTech;France
dc.contributor.editoruniversityotherCentre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS) http://cermics.enpc.fr/ Ecole des Ponts ParisTech;France
dc.description.abstractenIn this article, we study the existence and the uniqueness of traveling waves for a discrete reaction-diffusion equation with bistable non-linearity, namely a generalization of the fully overdamped Frenkel-Kontorova model. This model consists in a system of ODE's which describes the dynamics of crystal defects in a lattice solids. Under very poor assumptions, we prove the existence of a traveling wave solution and the uniqueness of the velocity of propagation of this traveling wave. The question of the uniqueness of the profile is also studied by proving Strong Maximum Principle or some weak asymptotics on the profile at infinity.en
dc.relation.isversionofjnlnameArchive for Rational Mechanics and Analysis
dc.relation.isversionofjnlvol210
dc.relation.isversionofjnlissue1
dc.relation.isversionofjnldate2013
dc.relation.isversionofjnlpages45-99
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s00205-013-0641-9
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00721233
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherSpringer
dc.subject.ddclabelAnalyseen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record