On certain anisotropic elliptic equations arising in congested optimal transport: local gradient bounds
Carlier, Guillaume; Brasco, Lorenzo (2013), On certain anisotropic elliptic equations arising in congested optimal transport: local gradient bounds, Advances in Calculus of Variations, 7, 3, p. 379–407. http://dx.doi.org/10.1515/acv-2013-0007
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00722615Date
2013Journal name
Advances in Calculus of VariationsVolume
7Number
3Publisher
De Gruyter
Pages
379–407
Publication identifier
Metadata
Show full item recordAbstract (EN)
Motivated by applications to congested optimal transport problems, we prove higher integrability results for the gradient of solutions to some anisotropic elliptic equations, exhibiting a wide range of degeneracy. The model case we have in mind is the following: \[ \partial_x \left[(|u_{x}|-\delta_1)_+^{q-1}\, \frac{u_{x}}{|u_{x}|}\right]+\partial_y \left[(|u_{y}|-\delta_2)_+^{q-1}\, \frac{u_{y}}{|u_{y}|}\right]=f, \] for $2\le q<\infty$ and some non negative parameters $\delta_1,\delta_2$. Here $(\,\cdot\,)_+$ stands for the positive part. We prove that if $f\in L^\infty_{loc}$, then $\nabla u\in L^r_{loc}$ for every $r\ge 1$.Subjects / Keywords
Traffic congestion; Anisotropic problems; Degenerate elliptic equationsRelated items
Showing items related by title and author.
-
Brasco, Lorenzo; Carlier, Guillaume; Santambrogio, Filippo (2010) Article accepté pour publication ou publié
-
Carlier, Guillaume; Brasco, Lorenzo (2013) Article accepté pour publication ou publié
-
Brasco, Lorenzo (2011) Article accepté pour publication ou publié
-
Buttazzo, Giuseppe; Carlier, Guillaume; Guarino lo Bianco, Serena (2015) Article accepté pour publication ou publié
-
Carlier, Guillaume; Duval, Vincent; Peyré, Gabriel; Schmitzer, Bernhard (2017) Article accepté pour publication ou publié