• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

On certain anisotropic elliptic equations arising in congested optimal transport: local gradient bounds

Carlier, Guillaume; Brasco, Lorenzo (2013), On certain anisotropic elliptic equations arising in congested optimal transport: local gradient bounds, Advances in Calculus of Variations, 7, 3, p. 379–407. http://dx.doi.org/10.1515/acv-2013-0007

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00722615
Date
2013
Journal name
Advances in Calculus of Variations
Volume
7
Number
3
Publisher
De Gruyter
Pages
379–407
Publication identifier
http://dx.doi.org/10.1515/acv-2013-0007
Metadata
Show full item record
Author(s)
Carlier, Guillaume
Brasco, Lorenzo
Abstract (EN)
Motivated by applications to congested optimal transport problems, we prove higher integrability results for the gradient of solutions to some anisotropic elliptic equations, exhibiting a wide range of degeneracy. The model case we have in mind is the following: \[ \partial_x \left[(|u_{x}|-\delta_1)_+^{q-1}\, \frac{u_{x}}{|u_{x}|}\right]+\partial_y \left[(|u_{y}|-\delta_2)_+^{q-1}\, \frac{u_{y}}{|u_{y}|}\right]=f, \] for $2\le q<\infty$ and some non negative parameters $\delta_1,\delta_2$. Here $(\,\cdot\,)_+$ stands for the positive part. We prove that if $f\in L^\infty_{loc}$, then $\nabla u\in L^r_{loc}$ for every $r\ge 1$.
Subjects / Keywords
Traffic congestion; Anisotropic problems; Degenerate elliptic equations

Related items

Showing items related by title and author.

  • Thumbnail
    Congested traffic dynamics, weak flows and very degenerate elliptic equations 
    Brasco, Lorenzo; Carlier, Guillaume; Santambrogio, Filippo (2010) Article accepté pour publication ou publié
  • Thumbnail
    Congested traffic equilibria and degenerate anisotropic PDEs 
    Carlier, Guillaume; Brasco, Lorenzo (2013) Article accepté pour publication ou publié
  • Thumbnail
    Global L∞ gradient estimates for solutions to a certain degenerate elliptic equation 
    Brasco, Lorenzo (2011) Article accepté pour publication ou publié
  • Thumbnail
    Optimal regions for congested transport 
    Buttazzo, Giuseppe; Carlier, Guillaume; Guarino lo Bianco, Serena (2015) Article accepté pour publication ou publié
  • Thumbnail
    Convergence of Entropic Schemes for Optimal Transport and Gradient Flows 
    Carlier, Guillaume; Duval, Vincent; Peyré, Gabriel; Schmitzer, Bernhard (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo