A Possible Homogenization Approach for the Numerical Simulation of Periodic Microstructures with Defects
dc.contributor.author | Blanc, Xavier
HAL ID: 11177 ORCID: 0000-0003-1783-0708 | |
dc.contributor.author | Le Bris, Claude | |
dc.contributor.author | Lions, Pierre-Louis | |
dc.date.accessioned | 2012-09-06T14:45:45Z | |
dc.date.available | 2012-09-06T14:45:45Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/9919 | |
dc.language.iso | en | en |
dc.subject | homogenization theory | en |
dc.subject | elliptic equation with oscillatory coefficient | en |
dc.subject.ddc | 515 | en |
dc.title | A Possible Homogenization Approach for the Numerical Simulation of Periodic Microstructures with Defects | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We present a general strategy, adapted from classical homogenization theory, to approximate at the fine scale the solution to an elliptic equation with oscillatory coefficient when this coefficient is a locally perturbed periodic function. We illustrate numerically the efficiency of the approach. The setting considered is a particular case of a more general method which is developed in works in preparation. | en |
dc.relation.isversionofjnlname | Milan Journal of Mathematics | |
dc.relation.isversionofjnlvol | 80 | |
dc.relation.isversionofjnlissue | 2 | |
dc.relation.isversionofjnldate | 2012 | |
dc.relation.isversionofjnlpages | 351-367 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/s00032-012-0186-7 | en |
dc.relation.isversionofjnlpublisher | Springer | en |
dc.subject.ddclabel | Analyse | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |